Mitigation Enabling Energy Transition in the MEDiterranean region

Thermal Energy Management Dr. Khaled ELFARRA

Energy Audits in Industrial Small Medium Enterprises (SMES) - Training Course

Monday, 9 December 2019 - Cairo, Egypt

Funded by the European Union

www.meetmed.org

Thermal Systems

- Energy Flows.
- Heat Transfer.
- Heating, Ventilation, and Air Conditioning (HVAC) Systems.
- Boilers and Steam Systems.
- Waste Heat Recovery.
- Automation Systems.

Energy Flows

- The energy flows defines the energy conversion, transformation, and transfer through energy balance diagram.
- This energy balance "business as usual" starts with the primary energy till the final consumed energy in a certain activity.
- Accordingly, on starting with primary energy the final energies can be in form of lighting source, mechanical power, electrical energy, chemical energy, heating process, cooling process,etc.

Energy Flows

Energy Flow in Building

RCREEE.

The Heat Flow

- The heat flow is processed through heat transfer that takes place by three modes;
 - Conduction (proportional to Δt)
 - Convection (approx. prop. to Δt^2)
 - Radiation (approx. prop. to Δt^4)
- Heat Transfer by Conduction;

- Heat is lost and gained through the building shell.

Heat Flow Equation

• The heat flow equation is;

$Q(Watt) = U X A X \Delta T$

Where;

Q: Heat Flow in Watt

U: Overall thermal conductance (Watt/m². °C).

- A: Area (m²)
- ΔT : Temperature Difference (°C)

Heat Flow Equation

• For Water

 $Q(kW) = LPS X 4.2 X \Delta T$

• For Air

 $Q(Watt) = LPS X 1.2 X \Delta T$

LPS: Flow rate in Liter per Second. ΔT : Temperature Difference (°C).

HVAC System

- HVAC is to provide and maintain a comfortable environment within a specific space for the occupants or for process through the control of the following parameters:
 - Temperature
 - Humidity
 - Air Quality
 - Air Distribution

HVAC System Components

• Primary Equipment;

- Chillers (Big)
- Direct expansion (DX) systems (Rooftop, Pad Mount)
- Boilers (Gas Steam)
- Cooling Towers

• Secondary Side (Air Side)

- Fan coil system
- Single duct, single zone system
- Dual duct system
- Single duct, variable air volume system

HVAC Systems – Cooling Cycles

Vapor Compression Cycle

- Mechanically Driven.

Absorption Cycle
 Thermally Driven

Energy Balance of Cooling Cycle

$$Q_{input} + Qload - Qreje_{cted} = 0.0$$

 Q_{input} : Input Energy to Cycle – Work input or thermal input

*Q*_{load}: Cooling Effect (Load) - Evaporator

 $Q_{rejected}$: Energy rejected from cycle through condenser.

Power and Energy Terms in HVAC

- Cooling Capacity is expressed in Tons of Refrigeration (TOR). TOR is 12,000 Btu/hr.
- 1 TOR = 12,000 Btu/hr = 3.517 kW
- HVAC Performance Measures;

HVAC Systems – Opportunities to Save Energy

- Investigate the chiller performance (COP).
- Chiller operation versus served load.
- Chiller Set point adjustment.
- Energy Management Controllers to Primary Equipment.
- Energy Management Controllers to Secondary Equipment.

Boilers and Steam Systems

• System Components;

Boilers and Steam Systems – Energy Savings Opportunities

- Combustion system improvement and controls.
- Flue Gas Energy Recovery.
- Blowdown Process Automation.
- Heat Recovery for Blowdown.
- Steam Traps Repair and improvement.
- Heat Transfer Surfaces improvement.
- Steam pipes insulation.

Waste Heat Recovery Systems

Waste Energy

Heat Recovery System (Heat Exchanger)

Useful Energy

Waste Heat Sources	Uses for Waste Heat
Combustion Exhausts:	Combustion air preheating
Glass melting furnace	Boiler feedwater preheating
Cement kiln	Load preheating
Fume incinerator	Power generation
Aluminum reverberatory furnace	 Steam generation for use in:
Boiler	power generation
Process off-gases:	mechanical power
Steel electric arc furnace	process steam
Aluminum reverberatory furnace	Space heating
Cooling water from:	Water preheating
Furnaces	 Transfer to liquid or gaseous process streams
Air compressors	
Internal combustion engines	
• Conductive, convective, and radiative losses from equipment:	
Hall-Hèroult cells ^a	
• Conductive, convective, and radiative losses from heated products: Hot cokes	
Blast furnace slags ^a	

RCREEE .

Waste Heat Resources and Recovery Potential

Temp Range	Example Sources	Temp (°F)	Temp (°C)	Advantages	Disadvantages/	Typical Recovery Methods/
	Nielel officing frances	2 500 2 000	1 270 1 650	TTinh multiple success	Barriers	Technologies
High ≥1,200°F [≥ 650°C]	Nickel feiling futnace	2,500-3,000	1,370-1,030	available for a diverse	increased thermal	Combustion air preneat
	Steel electric arc furnace	2,500-3,000	1,370-1,050	range of end-uses with	stresses on heat	Steam generation for process
	Basic oxygen furnace	2,200	1,200	varying temperature	exchange materials	heating or for mechanical/
	Aluminum reverberatory furnace	2,000-2,200	1,100-1,200	requirements High-efficiency power generation High heat transfer rate per unit area	Increased chemical activity/corrosion	electrical work
	Copper refining furnace	1,400-1,500	760-820			Furnace load preheating
	Steel heating furnace	1,700-1,900	930-1,040			
	Copper reverberatory furnace	1,650-2,000	900-1,090			Transfer to med-low
	Hydrogen plants	1,200-1,800	650-980			temperature processes
	Fume incinerators	1,200-2,600	650-1,430			
	Glass melting furnace	2,400-2,800	1,300-1,540			
	Coke oven	1,200-1,800	650-1,000			
	Iron cupola	1,500-1,800	820-980			
Medium 450-1,200°F [230-650°C]	Steam boiler exhaust	450-900	230-480	More compatible with		Combustion air preheat
	Gas turbine exhaust	700-1,000	370-540	heat exchanger materials		Steam/ power generation
	Reciprocating engine exhaust	600-1,100	320-590			Organic Rankine cycle for
	Heat treating furnace	800-1,200	430-650	Practical for nower		power generation
	Drying & baking ovens	450-1,100	230-590	generation		feedwater preheating
	Cement kiln	840-1.150	450-620	0		Transfer to low-temperature
						processes
	Exhaust gases exiting recovery	150-450	70-230	Large quantities of low-	Few end uses for low	Space heating
	devices in gas-fired boilers,			temperature heat	temperature heat	Domostic water beating
	Process steam condensate	130-190	50-90	product streams	Low-efficiency power	Domestic water nearing
	Cooling water from:	150-150	50-50	product streams.	generation	Upgrading via a heat pump to
Low <450°F [<230°C]	furnace doors	90-130	30-50		C	increase temp for end use
	annealing furnaces	150-450	70-230		For combustion exhausts,	
	air compressors	80-120	30-50		low-temperature heat	Organic Rankine cycle
	internal combustion	150-250	70-120		due to acidic	
	engines				condensation and heat	
	air conditioning and	90-110	30-40		exchanger corrosion	
	Drving baking and curing	200-450	90-230			
	ovens	200 .00	20220			
	Hot processed liquids/solids	90-450	30-230			

RCREEE

Control and Automation of Energy Systems

- Energy effective systems require energy effective controls (manual or automatic)
- Energy effective controls means that first we need to understand how the equipment SHOULD be operated and controlled, and then put such systems in place
- Requires that the system is properly installed, operational and commissioned.

Types of Control

- Manual Controls
 - Switches
 - Dimmers
- Basic Automatic Controls (Open Loop)
 - Timers
 - Photo-sensors (to detect external darkness)
- Basic Automatic Controls (Closed Loop)
 - Thermostat
 - Humidistat
 - Dimmable ballast with photo sensor

Control Technologies

- Pneumatic control compressed air powered controls
 - -20 100 kPa air systems
 - -Typical of older systems or hazardous areas
- Electric control voltage or current powered
 - -0 5 V, 0 10 V, 4 20 mA continuous
 - Typical of discrete control systems and some very old BMS
- Direct Digital Control electronic
 - -pulses; 0s and 1s; pulse coded data, discrete
 - -interfaces directly with PCs, and the Internet
 - Should have interface with BacNet, LonWorks, etc and TCP/IP

Contact us!

www.meetmed.org meetMED Project

@meetmed1

info@meetmed.org

