Mitigation Enabling Energy Transition in the MEDiterranean region

Electrical Energy Management Dr. Khaled ELFARRA

Energy Audits in Industrial Small Medium Enterprises (SMES) - Training Course

Monday, 9 December 2019 - Cairo, Egypt

Funded by the European Union

www.meetmed.org

Electrical Systems

- Electric Motors and Drives.
- Electric Fans.
- Electric Pumps.
- Compressed Air Systems.
- Lighting Systems.

Energy Basics Knowledge

- Energy Units and Formulas of calculations.
- Energy Balance.

Electrical Basics

Electric Power Circuits;

- DC Power (no reactive power is present)
 - Power (Watt) = Voltage (Volt) X Current (Ampere)
- AC Power, Single Phase
 - Active Power (Watt) = Voltage (V) X Current (A) X Power Factor (Pf)
 - Reactive Power (VAr) = Voltage (V) X Current (A) X Sin Ø
 - Apparent Power (VA) = Voltage (V) X Current (A)
- AC Power, Three Phase
 - Active Power (Watt) = $\sqrt{3}$ X Voltage (V) X Current (A) X Power Factor (Pf)
 - Reactive Power (VAr) = $\sqrt{3}$ X Voltage (V) X Current (A) X Sin Ø Apparent Power (VA/KVA)
 - Apparent Power (VA) = $\sqrt{3}$ X Voltage (V) X Current (A)

Active Power (Watt/kW)

Ø

Reactive Power (VAr/kVAr)

RCREEE.

Electrical Basics

- Electrical Loads Type:
 - Resistive Load of Unity Power Factor.
 - Inductive Load of Lagging Power Factor.
 - Capacitive Load of Leading Power Factor.
- Power Factor;
 - Poor Power Factor is due to inductive loads and should be corrected in order to reduce the phase shift angle (\emptyset).
 - Power Factor correction could save energy upstream the location of power factor correction equipment and it improves the power quality because of reducing the reactive power demand in Power System.
 - Fg

Power Factor Correction

- Benefits:

- Increase electrical distribution system capacity
- Reduce utility charges
- Reduce losses in transformers and feeders
- Methods:
 - Source Correction: Capacitor is installed at the individual load or integrated into the equipment
 - Group correction: Capacitor is installed at a distribution transformer that feeds several loads

Motors and Drives

Motors consume 55–65% of the industrial sector's electrical energy

Motors and Drives

• The motor efficiency is expressed in the division of the mechanical shaft power (Useful) over the input electrical energy.

 $\eta = \frac{\textit{Mechanical Shaft Power (kW)}}{\textit{Input Energy (kW)}} X \ 100$

- Motor Load Factor is defined as the ratio between the actual loading to the motor and the maximum installed motor load.
- Load Factor $(LF) = \frac{Actual Average Load of Motor}{Maximum Motor Loading}$

meetM=D

Energy Efficiency opportunities in Motors Efficiency of Electric Motors **Applications** Standard High Efficiency Power

High Efficient Motors.

 $kWsaving = kWrating X \left\{ \frac{1}{\eta_{old}} - \frac{1}{\eta_{new}} \right\}$

- Motors Controls;
 - Process Control.
 - Variable Speed Drives (VSD).

i owor	Otaridara	(average valu
150 kW (200 HP)	92,5	95,4
75 kW (100 HP)	91,7	95,0
37,3 kW (50 HP)	91,4	94,1
18,7 kW (25 HP)	89,6	93,0
11,2 kW (15 HP)	88,4	92,4
7,5 kW (10 HP)	87,3	89,4
3,7 kW (5 HP)	84,6	89,5
1,5 kW (2 HP)	79,9	85,5
1,1 kW (1.5 HP)	78,0	85,5
0.7 kW (1 HP)	74.8	84.0

old

Affinity Law - Centrifugal

$$\frac{LPS_{new}}{LPS_{old}} = \frac{RPM_{new}}{RPM_{old}}$$

$$\frac{Head_{new}}{Head_{old}} = \left\{\frac{RPM_{new}}{RPM_{old}}\right\}^2$$

$$\frac{kW_{new}}{kW_{old}} = \left\{\frac{RPM_{new}}{RPM_{old}}\right\}^3$$

LPS: Flow in liter per second. Head: Discharge Head. kW: Motor input power. **RPM:** shaft speed in rotation per minute. kPa: Kilo Pascal

le)

Electric Fans

- With fans, four basic approaches for energy efficiency are feasible:
 - Reduction of hours of operation
 - Improve equipment efficiency
 - Flow reduction
 - Pressure reduction

The Same Affinity Laws are applied to fans very similar to pumps

 $Fan input power(Watt) = \frac{LPS}{Fan or Pump set Efficiency} X Discharge Pressure (kPa)$

RCREEE 📲

Pumps/Fans Controls

• To Control the performance efficiency, the approach is:

- Reduction of hours of operation
- Equipment efficiency
- Flow reduction
- Pressure reduction

• To control the hours of operation, the strategy is:

- Manual control
- Timers
- Centralized building controls
- Start-stop set points
- Occupancy sensors

Pump Operation and Design Consideration

Pump Operating Point

Dynamic Head

Static Head

Flow (I/s)

Pump Flow Control Schemes

- Energy Efficiency Opportunities;
 - Reduction of air losses
 - Modification of distribution system
 - Modification of other systems
 - Compressor efficiency
 - Optimization of distribution pressure
 - Compressor control
 - Multi-stage compressors

- Potential Savings to Compressed Air Systems;
 - Leak reduction is a very cost-effective energy conservation measure.
 - The payback period is too short.

Hole diameter (mm)	Air consumption at 6 bar (g) m ³ /min	Loss kW
1	0.065	0.3
2	0.240	1.7
3	0.980	6.5
4	2.120	12.0

- Measures to consider;
 - Distribution system Modifications (if there are large pressure drops)
 - Pipe selection according to a pressure drop of 5% or less in initial pressure
 - Replace piping when the diameter is too small
 - Add new piping in parallel
 - Generously size filters, final coolers, air dryers and fittings
 - Replace fast fittings by fixed fittings for permanent tools
 - Compressor Efficiency;
 - Relocate inlet (colder air)
 - Replace standard motors with high-efficiency ones
 - Replace filters regularly: excessive pressure drop in filters also wastes energy
 - Choose the right air dryer; Desiccant or Refrigeration-based

- Measures to consider;
 - Multi Stage Compressors;
 - Two-stage flooded rotary screw compressors offer significant power savings over single-stage compressors.
 - Unless power is extremely inexpensive or the daily operational time is very short, two-stage compressors typically provide a return on the investment within the first two years of operation, and often within the first.
 - Air dryer optimization;
 - Air dryers can be a huge energy consumer.
 - The refrigeration type are usually good in terms of efficiency.
 - The absorption type used in the moisture-sensitive type should be carefully adjusted.
 - Venturi nozzles to reduce air flow;

Lighting Systems

 Lighting Systems Consumption Distribution;

RCREEE

Lighting Systems

- Objectives;
 - Discuss concepts and characteristics of energyeffective lighting design
 - Identify typical lighting energy conservation opportunities
 - Demonstrate lighting economics calculations and relationships

- Quality;
 - Color Rendering Index (CRI)
 - Indicates the effect on the color appearance of objects illuminated by the light source of a particular colour temperature
 - 90 100 CRI = Excellent color rendition
 - 75 85 CRI = Good color rendition
 - 55 70 CRI = Fair color rendition
 - 0 55 CRI = Poor color rendition.
 - Correlated Color Temperature (CCT)
 - The color appearance of light emitted from a light
 - < 3200 K = "warm" or red side of spectrum
 - > 4000 K = "cool" or blue side of spectrum

Lighting Systems – Definitions

- <u>Lumen</u>: measure unit of the total "amount" of visible light emitted by a source (symbol: lm)
- <u>Lux</u>: unit of illuminance and luminous emittance, measuring luminous flux per unit area; equals 1 lm/m². (symbol: lx)
- Luminous efficacy: measure of how well a light source produces visible light; it is the ratio of luminous flux to power in Im/W
- Colour temperature: of a light source: the temperature of an ideal black-body radiator that radiates light of comparable <u>hue</u> to that of the light source

Typical Lighting Level

Building area Office – general Lux Auditorium 400 400 Bathroom 300 Dining room 100 Conference room 300 50 Corridors and stairs Local roads 3 to 8 Highways 6 to 14

Lighting Source Technology

- Incandescent
- Halogen
- Metal halide
- Fluorescent
- Mercury vapour
- High-pressure sodium
- Induction
- LED

meetM=D

Typical Lifespan Of Various Light Source Technologies

Efficacy of Light Source Technologies

Contact us!

www.meetmed.org meetMED Project

@meetmed1

