Mitigation Enabling Energy Transition in the MEDiterranean region

Energy Overview – Conservation and Efficient Use of Energy Resources Dr. Khaled ELFARRA

Energy Audits in Industrial Small Medium Enterprises (SMES) - Training Course

Sunday, 8 December 2019 – Cairo, Egypt

Funded by the European Union

www.meetmed.org

What is Energy and its Forms?

- **Energy** is the ability to do work or cause a change.
- *Forms* of Energy are;
 - Potential
 - Kinetic
- **<u>Resources</u>**: all materials in the environment that can be used.
- <u>**Reserves:**</u> quantities of resources that are known and are legally and economically extractable with current technology.
- <u>Projected Reserves</u>: current reserves plus all resources that may become reserves due to improved technologies and changing prices.
- **<u>Renewable Resources</u>**: such as farmland soil, water, solar, forests, and fisheries, where the sustainable rate of use can be no greater than the rate of regeneration.
- Solar-based renewable energy: are ultimately powered by the sun: solar, wind, hydropower, wave and biomass.
- <u>Non-renewable resources</u>: substances such as fossil fuels, high grade mineral ore, and fossil groundwater.

Potential and Kinetic Energy

- The potential energy is the energy stored, i.e. ice on top of the mountain, water behind dams, any mass elevated, Etc.
- The kinetic energy is the movement of objects or substances from one place to another conducting work.

Potential and Kinetic Energy

FORMS OF ENERGY All forms of energy fall under two categories

POTENTIAL

Potential energy is stored energy and the energy of position (gravitational)

CHEMICAL ENERGY

Chemical energy is the energy stored in the bonds of atoms and molecules. Biomass, petroleum, natural gas, propane and coal are examples of stored chemical energy.

NUCLEAR ENERGY

Nuclear energy is the energy stored in the nucleus of an atom - the energy that holds the nucleus together. The nucleus of a uranium atom is an example of nuclear energy.

STORED MECHANICAL ENERGY

Stored mechanical energy is energy stored in objects by the application of a force. Compressed springs and stretched rubber bands are examples of stored mechanical energy.

GRAVITATIONAL ENERGY

Gravitational energy is the energy of place or position. Water in a reservoir behind a hydropower dam is an example of gravitational potential energy. When the water is released to spin the turbines, it becomes motion energy.

KINETIC

Kinetic energy is motion the motion of waves, electrons, atoms, molecules and substances

RADIANT ENERGY

Radiant energy is electromagnetic energy that travels in transverse waves. Radiant energy includes visible light, x-rays, gamma rays and radio waves. Solar energy is an example of radiant energy.

THERMAL ENERGY

Thermal energy (or heat) is the internal energy in substances - the vibration and movement of atoms and molecules within substances. Geothermal energy is an example of thermal energy.

MOTION

The movement of objects or substances from one place to another is motion. Wind and hydropower are examples of motion.

SOUND

Sound is the movement of energy through substances in longitudinal (compression/ rarefaction) waves.

ELECTRICAL ENERGY

Electrical energy is the movement of electrons. Lightning and electricity are examples of electrical energy.

Energy Resources Categorization

Energy Resources versus Demand

- The energy resources are the supply side that should meet the demand in secured and sustainable mode.
- The planning for future demand should consider:
 - Energy Conservation Opportunities:
 - To improve the consumption pattern and to reduce the consumption level.
 - To set policies, regulate the energy reforming, and to publicize the programs for energy conservation tools.
 - Energy Efficiency (EE) Opportunities:
 - To update the list for energy efficiency technologies (if any).
 - To adapt the technologies implementation, capacities needed, resources requirements,etc.
 - To link the EE technologies with the Green Economy aspects.
 - Renewable Energy (RE) Resources:
 - To plan for the replacement of non sustainable energy resources by the RE resources.
 - To plan for the Potential RE resources to be introduced either on supply side or the demand side.
 - To promote for the RE resources implementation versus the avoided Greenhouse Gases (GHG).

Energy Outlook 2019

Global Energy by Fuel

Primary energy consumption by fuel

Shares of primary energy

RCREEE

meetM =

Why Energy Conservation and Efficiency?

- The energy utilization is in most cost effective way because of:
 - Energy Prices increase.
 - Energy Security Level.
 - Climate Change.
 - Green Economy Formulation.
 - The Sustainability Development Approaches.
- Benefits to End-Users:
 - Cost Cutting to final products and services.
 - Strengthen the competitiveness.
 - Lowering the GHG emission to be strong marketing tool for products and services.

Systems to Apply EE Opportunities

- Heating Ventilation, and Air Conditioning (HVAC).
- Air Compressors.
- Heat Generators (Thermal/Cooling), i.e. boilers, heaters, furnaces, driers, Chillers, ...etc.
- Lighting Systems.
- Wastes Treatment.
- Motors and Drives.
- Processes, Services optimized performance.
- Refrigeration Systems.
- Distribution Networks (Electrical, Piping,etc.)

Energy Efficiency and Renewable Energy Barriers to Implementation

- Lack of awareness and perceived risks.
- Conflict of investment priorities.
- Financing and Financial Mechanisms.
- Lack of Benchmarking (Best Practices).
- Absence of Technologies.
- Regulating pressure.
- Policies enforcement.
- Human Capacities.

Energy Balance and Efficiency

Contact us!

www.meetmed.org meetMED Project

@meetmed1

info@meetmed.org

